CLOSED CONFORMAL VECTOR FIELDS

SHÛKICHI TANNO & WALDEMAR C. WEBER

1. Introduction

Let M be a connected m-dimensional Riemannian manifold with metric g. A vector field X on M is conformal if and only if

$$(1.1) L_x g = -(2/m)\delta \xi \cdot g,$$

where L_X denotes the Lie derivation with respect to X, $\xi = g(X, \cdot)$ is the covariant form of X with respect to g, and $\delta \xi$ is the corresponding codifferential form of ξ . Let d be the exterior differential operator, and Q the Ricci operator which is defined on the 1-form ξ by $Q\xi = R_1(X, \cdot)$, R_1 being the Ricci tensor.

If M is a connected 2-dimensional Riemannian manifold with constant scalar curvature S > 0, and M admits a conformal non-Killing vector field, then M is globally isometric with a sphere (cf. [1]).

Next let M be a connected, compact Riemannian manifold of dimension m > 2 with constant scalar curvature S > 0. Then M is globally isometric with a sphere, if M admits a conformal non-Killing vector field X and any one of the following conditions is satisfied:

- (a) M is an Einstein space [6], [8],
- (b) the Ricci tensor is parallel [5],
- (c) trace Q^2 is constant [4],
- (d) $Qd\delta\xi = kd\delta\xi$ for some constant k [9],
- (e) $Qd\delta C_0^*(M) \subset d\delta C_0^*(M)$, where $C_0^*(M)$ denotes the space of covariant forms of all conformal vector fields on M [1],
 - (f) ξ is an exact form [4].
- (a) and (e) have been proved independently. Conditions (d) and (e) are related to (f). If ξ is exact, then ξ vanishes at some point of M. The first theorem of this note is a generalization of (f).

Theorem 1. Let M be a connected compact Riemannian manifold with the constant scalar curvature S > 0. Then M is globally isometric with a sphere if M admits a closed conformal vector field X which satisfies one of the conditions:

- (i) the harmonic part h of ξ vanishes at some point of M,
- (ii) X vanishes at some point of M,

Communicated by K. Yano, June, 24, 1968.

- (iii) $R_1(X, X) = (S/m)g(X, X)$ holds at some point of M,
- (iv) $R_1(X, X)$ is non-negative.

Corollary 1. Let M be connected, compact and orientable Riemannian manifold with positive constant scalar curvature. Assume that the Euler number is not equal to zero (m: even) and that M admits a closed conformal vector field. Then M is globally isometric with a sphere.

Remark. In Theorem 1, any closed conformal vector field satisfies (i), if M has one of the properties:

- (v) Q is non-singular at each point of M,
- (vi) for any function f, we have $C_0(M, g) \neq I_0(M, e^f g)$, where $C_0(M, \cdot)$ or $I_0(M, \cdot)$ denotes the identity component of the group of conformal transformations or isometries, respectively.

In §4 we consider sufficient conditions for M to admit a closed or exact conformal vector field. We denote by $\Lambda^r(M)$ the space of all r-forms on M and by $H^1(M)$ the space of all harmonic 1-forms on M.

Theorem 2. Suppose that a compact orientable Riemannian manifold M admits a conformal non-Killing vector field. Then M admits closed conformal vector field if any one of the following conditions is satisfied:

- (a) $Q\delta\Lambda^2(M) \subset \delta\Lambda^2(M)$,
- (b) for any $w \in \Lambda^1(M)$ such that dw = 0, we have dQw = 0,
- (c) $dQd\Lambda^{0}(M) = (0)$ and $dQH^{1}(M) = (0)$,
- (d) $\delta Q \delta \Lambda^2(M) = (0)$ and $dQH^1(M) = (0)$,
- (e) $dQd\delta C_0^*(M) = (0)$, $dQH^1(M) = (0)$ and S is constant.

Theorem 3. Suppose that a compact orientable Riemannian manifold M admits a conformal non-Killing vector field. Then M admits a conformal vector field whose covariant form is exact if any one of the following conditions is satisfied:

- (f) $Qd\Lambda^0(M) \subset d\Lambda^0(M)$,
- (g) for any $w \in \Lambda^1(M)$ such that $\delta w = 0$, we have dQw = 0,
- (h) $dQdA^{0}(M) = (0)$ and $dQH^{1}(M) = (0)$,
- (i) $\delta Q \delta A^2(M) = (0)$ and $\delta Q H^1(M) = (0)$,
- (j) $dQd\delta C_0^*(M) = (0)$, $\delta QH^1(M) = (0)$ and S is constant.

Authors would like to thank Professor S. I. Goldberg who suggested this problem.

2. Preliminaries

Let M be a compact orientable Riemannian manifold. By Yano's theorem [7] a vector field X with the covariant form ξ is a Killing vector field if and only if

(2.1)
$$\delta \xi = 0, \quad \langle \Delta \xi - 2Q \xi, \xi \rangle = 0,$$

where $\Delta = d\delta + \delta d$ is the Laplace-Beltrami operator, and \langle , \rangle denotes

the global inner product. Subsequently Lichnerowicz [3] has shown that a necessary and sufficient condition for X to be a conformal vector field is

(2.2)
$$\Delta \xi + (1 - 2/m) d\delta \xi - 2Q \xi = 0,$$

or

$$(2.2)' \qquad \langle \Delta \xi + (2-2/m)d\delta \xi - 2Q\xi, \, \xi \rangle = 0.$$

Now we assume that the scalar curvature S is constant. We can assume also that S is positive (cf. [3]). The relation $L_XS = 0$ for a conformal vector field X is equivalent to

$$(2.3) \Delta \delta \xi = (m-1)^{-1} S \delta \xi .$$

Let h be the harmonic part of the covariant form ξ of X. Then by the Hodge-de Rham decomposition theorem we have

$$\xi = d\delta\eta + \delta d\eta + h$$

for some 1-form η , and substitution of $\delta \xi = \delta d \delta \eta$ into (2.3) gives $\delta (d \Delta \delta \eta) = (m-1)^{-1} S d \delta \eta = 0$. Therefore we get $\Delta d \delta \eta = (m-1)^{-1} S d \delta \eta$. By $\Delta d \delta \eta = d \delta \xi$, we have

$$(2.5) d\delta \eta = (m-1)S^{-1}d\delta \xi.$$

3. Proof of Theorem 1

To prove Theorem 1 we can assume that m > 2 and that M is orientable (cf. [1]). Let X be a closed conformal vector field on M. Then by (2.2) we have

$$(3.1) \Delta \xi = d\delta \xi = m(m-1)^{-1}Q\xi.$$

Since $d\xi = 0$, by (2.4) and (2.5) the harmonic part h of ξ is

(3.2)
$$h = \xi - (m-1)S^{-1}d\delta\xi.$$

Operating L_X to $\xi_i = g_{ij}X^j$ gives

(3.3)
$$d(g(X, X)) = L_X \xi = -2m^{-1} \delta \xi \cdot \xi.$$

Since ξ is closed we have $d\delta\xi \wedge \xi = 0$. Now let M_0 be the set of points where ξ vanishes, and let $M^* = M - M_0$. Then we get a C^{∞} -function A^* on M^* such that

$$(3.4) d\delta \xi = A^* \xi$$

on M^* . Similarly, we have a C^{∞} -function B^* on M^* such that

$$(3.5) dA^* = B^*\xi$$

on M^* . By (3.1) we have

$$(3.6) Q\xi = (m-1)m^{-1}A^*\xi.$$

Lemma. The function A^* on M^* is extendable to a continuous function A on M, and

- (A-1) if $A = (m-1)^{-1}S$ at a point of M^* , then it holds on M,
- (A-2) if M^* has no point where $A = (m-1)^{-1}S$ holds, then $A < (m-1)^{-1}S$ holds on M, A takes negative values somewhere on M, and M_0 is empty.

Proof. First we show that $(\delta \xi)_P \neq 0$ for any point P of M_0 when $M \neq M^*$. In fact, if $(\delta \xi)_P = 0$, then (1.1) shows that $(D_j \xi_i)_P = 0$ since ξ is closed, where D is the Riemannian connection by G. By (3.1) we have $(d\delta \xi)_P = 0$. Namely, we have $\xi_P = (D\xi)_P = (\delta \xi)_P = (d\delta \xi)_P = 0$. However, by the differential equations satisfied by conformal vector fields ξ must vanish on M. Therefore we have $(\delta \xi)_P \neq 0$ for any point P of M_0 . Then by (1.1) we have $(D_1 \xi)_P \neq 0$ for any non-zero tangent vector Y at P. This means that P is an isolated point. By (3.6) and the continuity of eigenvalues of Q we can extend A^* on M^* to a continuous function A on M. We operate δ to (3.4) and get

(3.7)
$$\delta \Delta \xi = -g(dA^*, \xi) + A^* \delta \xi$$

on M^* . By (2.3) and (3.5) we have

$$(3.8) (m-1)^{-1}S\delta\xi = -B^*g(\xi,\xi) + A^*\delta\xi$$

on M^* . We solve (3.8) for B^* and substitute into (3.5). Then using (3.3) we have a differential equation

(3.9)
$$d(A^* - (m-1)^{-1}S) = -2^{-1}m(A^* - (m-1)^{-1}S)d(\log g(X, X))$$

on M^* . Thus, if $A = (m-1)^{-1}S$ at one point of M^* , then $A = (m-1)^{-1}S$ on M. It is known that $\langle Qh, h \rangle \leq 0$ holds for any harmonic 1-form, and so by (3.2) and (3.6) we have

$$\langle (1-(m-1)S^{-1}A)^2Q\xi,\xi\rangle = (m-1)m^{-1}\langle (1-(m-1)S^{-1}A)^2\xi,A\xi\rangle \leq 0.$$

This shows that if $A \neq (m-1)^{-1}S$ anywhere on M^* then A takes a negative value at some point on M^* , and hence $(m-1)^{-1}S > A$ on M^* . Then we can solve (3.9) for A as follows:

(3.10)
$$A = (m-1)^{-1}S - e^{c}(g(X, X))^{-m/2}$$

on M^* , where c is a contant. (3.10) means that A can not be continuous on M unless M_0 is empty.

Proof of Theorem 1. In each case we show that the harmonic part of ξ vanishes, and this is equivalent to the relation $A = (m-1)^{-1}S$ by (3.2) and (3.4). (i) follows from the Lemma (A-1). (ii) follows from (A-2) and (A-1) of the Lemma, since M_0 is not empty. (iii) and (iv) follow also from the Lemma.

q.e.d.

Condition (v) of the Remark in the introduction implies that the function A* does not take value zero. By relations

$$0 = \langle \Delta h, \xi \rangle = \langle h, \Delta \xi \rangle = \langle (1 - (m-1)S^{-1}A)A\xi, \xi \rangle,$$

A can not be negative. Then we apply our Lemma.

Let $\xi \in C_0^*(M)$ be closed. If M_0 is non-empty, then ξ is exact. Assume condition (vi) and that M_0 is empty. Set $e^f = (g(X, X))^{-1}$, and define g' by $g'=e^fg$. Then we have $L_Xg'=0$. Next define ξ' by $\xi'=g'(X,\cdot)$ = $(g(X, X))^{-1}\xi$. By (3.3) ξ' is also closed. Therefore ξ' must be a parallel vector field with respect to g', and we have $C_0(M, g') = I_0(M, g')$ (cf. [2]). Since $C_0(M, g') = C_0(M, g)$, this contradicts the assumption.

Proofs of Theorems 2 and 3

It may be easily verified that (a), (b), (c) and (d) are equivalent, and (f), (j), (h) and (i) are equivalent. Assuming (c), we show that M admits a closed conformal vector field. Let (2.4) be the decomposition of ξ . Then by (2.2) we have

$$0 = \langle \Delta \xi + (1 - 2m^{-1})d\delta \xi - 2Q\xi, \delta d\eta \rangle$$

= $\langle \Delta d\delta \eta + (1 - 2m^{-1})d\delta d\delta \eta - 2Qd\delta \eta$
- $2Qh + \Delta \delta d\eta - 2Q\delta d\eta, \delta d\eta \rangle$.

By (c) we have

(4.1)
$$\langle \Delta \delta d\eta - 2Q \delta d\eta, \delta d\eta \rangle = 0.$$

By (2.1) $\delta d\eta$ defines a Killing vector field, and so $d\delta \eta + h$ is a closed conformal vector field. If S is constant, then $2Qd\delta\eta \in Qd\delta C_0^*(M)$ by (2.5). Thus (e) implies (4.1). This proves Theorem 2. To prove Theorem 3, assume (i). Then by (2.2) we have

$$\langle \Delta d\delta \eta + (1-2m^{-1})d\delta d\delta \eta - 2Qd\delta \eta - 2Qh + \Delta \delta d\eta - 2Q\delta d\eta, d\delta \eta \rangle = 0.$$

By (i) we get

$$\langle \Delta d\delta \eta + (1-2m^{-1})d\delta d\delta \eta - 2Qd\delta \eta, d\delta \eta \rangle = 0.$$

Hence $d\delta\eta$ defines a conformal vector field by (2.2)', which is exact. Case (j) is similar to (e).

Added in proof. Another proof for Theorem 1 appears in W. C. Weber & S. I. Goldberg, Conformal deformations of Riemannian manifolds, Queen's Papers in Pure and Applied Mathematics, No. 16, Queen's University, Kingston, Ontario, Canada, 1969.

References

- R. L. Bishop & S. I. Goldberg, A characterization of the Euclidean sphere, Bull. Amer. Math. Soc. 72 (1966) 122–124.
- [2] S. I. Goldberg & S. Kobayashi, The conformal transformation group of a compact Riemannian manifold, Amer. J. Math. 84 (1962) 170-174.
- [3] A. Lichnerowicz, Transformations infinitésimales conformes de certaines variétés riemanniennes compactes, C. R. Acad. Sci. Paris 241 (1955) 726-729.
- [4] —, Sur les transformations conformes d'une variété riemannienne compacte, C.
 R. Acad. Sci. Paris 259 (1964) 697-700.
- [5] T. Nagano, The conformal transformations on a space with parallel Ricci tensor,
 J. Math. Soc. Japan 11 (1959) 10-14.
- [6] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962) 333-340.
- [7] K. Yano, On harmonic and Killing vector fields, Ann. of Math. 55 (1952) 38-45.
- [8] K. Yano & T. Nagano, Einstein spaces admitting a one-parameter group of conformal transformations, Ann. of Math. 69 (1959) 451-461.
- [9] K. Yano & M. Obata, Sur le groups de transformations conformes d'une variéte de Riemann dont le scalaire de courbure est constant, C. R. Acad. Sci. Paris 260 (1965) 2698-2700.

TôHOKU UNIVERSITY
UNIVERSITY OF ILLINOIS
BOWLING GREEN STATE UNIVERSITY