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CLOSED CONFORMAL VECTOR FIELDS

SHUKICHI TANNO & WALDEMAR C. WEBER

1. Introduction

Let M be a connected m-dimensional Riemannian manifold with metric g.
A vector field X on M is conformal if and only if

(1.1) Lyg = — (2/m)ot - g,

where Ly denotes the Lie derivation with respect to X, & = g(X, -) is the co-
variant form of X with respect to g, and 3¢ is the corresponding codifferential
form of &. Let d be the exterior differential operator, and Q the Ricci operator
which is defined on the 1-form & by Q¢ = R\(X, -), R, being the Ricci tensor.

If M is a connected 2-dimensional Riemannian manifold with constant
scalar curvature S > 0, and M admits a conformal non-Killing vector field,
then M is globally isometric with a sphere (cf. [1]).

Next let M be a connected, compact Riemannian manifold of dimension
m > 2 with constant scalar curvature $ > (0. Then M is globally isometric
with a sphere, if M admits a conformal non-Killing vector field X and any
one of the following conditions is satisfied:

(a) M is an Einstein space [6], [8],

(b) the Ricci tensor is parallel [5],

(¢c) trace Q? is constant [4],

(d) Qdsé = kdo¢ for some constant k [9],

(e) QdsC¥ (M) C déCF(M), where C¥(M) denotes the space of covariant
forms of all conformal vector fields on M [1],

) & is an exact form [4].

(a) and (e) have been proved independently. Conditions (d) and (e) are
related to (f). If & is exact, then & vanishes at some point of M. The first
theorem of this note is a generalization of (f).

Theorem 1. Let M be a connected compact Riemannian manifold with
the constant scalar curvature S > 0. Then M is globally isometric with a
sphere if M admits a closed conformal vector field X which satisfies one of
the conditions:

(i)  the harmonic part h of & vanishes at some point of M,

(i) X vanishes at some point of M,
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(i) R(X, X) = (S/m)g(X, X) holds at some point of M,

(iv) R,(X, X) is non-negative.

Corollary 1. Let M be connected, compact and orientable Riemannian
manifold with positive constant scalar curvature. Assume that the Euler
number is not equal to zero (m: even) and that M admits a closed conformal
vector field. Then M is globally isometric with a sphere.

Remark. In Theorem 1, any closed conformal vector field satisfies (i), if
M has one of the properties:

(v) @ is non-singular at each point of M,

(vi) for any function f, we have C,(M, g) + I (M, e’g), where C,(M, -)or
1(M, .) denotes the identity component of the group of conformal transforma-
tions or isometries, respectively.

In §4 we consider sufficient conditions for M to admit a closed or exact
conformal vector field. We denote by A7(M) the space of all r-forms on M
and by H'(M) the space of all harmonic 1-forms on M.

Theorem 2. Suppose that a compact orientable Riemannian manifold M
admits a conformal non-Killing vector field. Then M admits closed conformal
vector field if any one of the following conditions is satisfied :

(a) QoAXM) C 644 M),

(b) for any we A(M) such that dw = 0, we have dQw = 0,

(©) dQdA" M) = (0) and dQH'(M) = (0),

(d) aQoAXM) = (0) and dQH'(M) = (0),

(&) dQdsCHM) = (0), dQH(M) = (0) and S is constant.

Theorem 3. Suppose that a compact orientable Riemannian manifold M
admits a conformal non-Killing vector field. Then M admits a conformal vec-
tor field whose covariant form is exact if any one of the following conditions
is satisfied:

() QdAM) C dA (M),

(g) for any we A(M) such that 6w = 0, we have dQw = 0,

(h) dQdAM) = (0) and dQH'(M) = (0),

() 0QsAXM) = (0) and 6QH'(M) = (0),

(J)  dQdsCHM) = (0), 6QH'(M) = (0) and S is constant.

Authors would like to thank Professor S. I. Goldberg who suggested this
problem.

2. Preliminaries

‘Let M be a compact orientable. Riemannian manifold. By Yano’s theorem
[7] a vector field X with the covariant form & is a Killing vector field if and
only if

where 4 = dé + 4d is the Laplace-Beltrami operator, and < , > denotes
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the global inner product. Subsequently Lichnerowicz [3] has shown that a
necessary and sufficient condition for X to be a conformal vector field is

2.2) 48 + (1 — 2/m)dée — 2Q¢ =0,
or
2.2y {48 + 2 — 2/m)doé — 2Q¢, &> =0.

Now we assume that the scalar curvature S is constant. We can assume also
that S is positive (cf. [3]). The relation L,S = O for a conformal vector field
X is equivalent to

2.3) 46¢ = (m — 1)7'Ss¢ .

Let h be the harmonic part of the covariant form & of X. Then by the
Hodge-de Rham decomposition theorem we have

2.4 = ddp + édyp + h

for some 1-form 7, and substitution of §¢ = §ddy into (2.3) gives §(dddy
— (m — 1)"' Sdbép) = 0. Therefore we get 4doy = (m — 1)~' S ddy. By 4déy
= dj¢, we have

2.5)  deg = (m — 1)S-'dot .

3. Proof of Theorem 1

To prove Theorem 1 we can assume that m > 2 and that M is orientable
(cf. [1]). Let X be a closed conformal vector field on M. Then by (2.2) we
have

G.D 4§ = dé¢ = m(m — 1)7'Q¢ .

Since d&¢ = 0, by (2.4) and (2.5) the harmonic part & of £ is
3.2) h=¢§&— (m— 1)S7ds¢ .
Operating Ly to &; = g,;X7 gives

(3.3) d(g(X, X)) = Lyt = —2m™'6¢ - €.

Since ¢ is closed we have d6&¢ A& = 0. Now let M, be the set of points where
¢ vanishes, and let M* = M — M,. Then we get a C*-function A* on M*
such that

(3.4 dog = A*¢
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on M*. Similarly, we have a C~-function B* on M* such that
(3.5) dA* = B*¢

on M*. By (3.1) we have

(3.6) Q¢ = (m — I)m'A*¢ .

Lemma. The function A* on M* is extendable to a continuous function
Aon M, end

(A-1) if A = (m — 1)7'S at a point of M*, then it holds on M,

(A-2) if M* has no point where A = (m—1)7'S holds, then A < (im—1)"'S
holds on M, A takes negative values somewhere on M, and M, is empty.

Proof. First we show that (&), # O for any point P of M, when M = M*.
In fact, if (6¢)p = O, then (1.1) shows that (D,£,), = 0 since & is closed,
where D is the Riemannian connection by G. By (3.1) we have (dé¢), = 0.
Namely, we have &, = (D§), = (68), = (dd¢), = 0. However, by the differ-
ential equations satisfied by conformal vector fields ¢ must vanish on M.
Therefore we have (6£),, + O for any point P ot M,. Then by (1.1) we have
(D-&)p # 0 for any non-zero tangent vector Y at P. This means that P is an
isolated point. By (3.6) and the continuity of cigenvalues of O we can extend
A* on M* to a continuous function A4 on M. We operate § to (3.4) and get

(3.7 048 = — g(dA*, &)+ A*5¢
on M*. By (2.3) and (3.5) we have
(3.8) (m — 1)7'S6¢ = — B*g(&, §) + A*o¢

on M*. We solve (3.8) for B* and substitute into (3.5). Then using (3.3) we
have a differential equation

(3.9) dA4* — (m — 1)718) = — 27'm(A4* — (m — 1)"'S)d(log g(X, X))

on M*. Thus, if 4 = (m — 1)7'S at one point of M*, then 4 = (m — 1)°'S
on M. It is known that {Qh, h> < 0 holds for any harmonic 1-form, and so
by (3.2) and (3.6) we have

I —=0m—15"4)Q¢, &) =(m—Dm™ (1 — (m— 1)ST'4)¢, A5 < 0.

This shows that if 4 = (m — 1)-'S anywhere on M* then A takes a negative
value at some point-on M*, and hence (m — 1)7'S > 4 on M*. Then we can
solve (3.9) for 4 as follows:

(3.10) A=(m—1)"1S—e(g(X, X)) ™2
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on M*, where c is a contant. (3.10) means that A can not be continuous on
M unless M, is empty.

Proof of Theorem 1. In each case we show that the harmonic part of ¢
vanishes, and this is equivalent to the relation 4 = (m — 1)7'S by (3.2) and
(3.4). (1) follows from the Lemma (A-1). (ii) follows from (A-2) and (A-1) of
the Lemma, since M, is not empty. (iii) and (iv) follow also from the Lemma.

q.e.d.

Condition (v) of the Remark in the introduction implies that the function

A* does not take value zero. By relations

A can not be negative. Then we apply our Lemma.

Let £ e C¥(M) be closed. If M, is non-empty, then ¢ is exact. Assume con-
dition (vi) and that M, is empty. Set e/ = (g(X, X))~!, and define g’ by
g = e’g. Then we have Lyg’'=0. Next define & by & = g'(X, )
= (g(X, X)) '&. By (3.3) & is also closed. Therefore & must be a parallel
vector field with respect to g’, and we have C,(M,g") = I(M, g") (cf. [2]).
Since C,(M, g’) = C«(M, g), this contradicts the assumption.

4. Proofs of Theorems 2 and 3

It may be easily vériﬁed that (a), (b), (c) and (d) are equivalent, and (f), (j),
(h) and (i) are equivalent. Assuming (c), we show that M admits a closed
conformal vector field. Let (2.4) be the decomposition of £&. Then by (2.2) we
have

0= 46+ (1 — 2m~")dés — 2Q6¢, ddp>
= {ddéy + (1 — 2m™)dsdéy — 2Qddy
— 20h + 46dn — 2Qddy, édyn)y .
By (c) we have
4.1 {dédy — 2Qédy, dp> = 0.

By (2.1) édy defines a Killing vector field, and so doy + A is a closed confor-
mal vector field. If S is constant, then 2Qddy € Qd5CF(M) by (2.5). Thus (e)
implies (4.1). This proves Theorem 2. To prove Theorem 3, assume (i).
Then by (2.2) we have
{ddéy + (1 — 2m~")ddddy — 2Qdon — 20h
+ dody — 2Qédy, ddny = 0.

By (i) we get
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(Adoy + (1 — 2m=)dddsy — 2Qdédy, dén> = 0.

Hence diy defines a conformal vector field by (2.2)’, which is exact. Case (j)
is similar to (e).

Added in proof. Another proof for Theorem 1 appears in W. C. Weber
& S. 1. Goldberg, Conformal deformations of Riemannian manifolds, Queen’s
Papers in Pure and Applied Mathematics, No. 16, Queen’s University,
Kingston, Ontario, Canada, 1969.
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